Tuesday, 27 July 2010

In this part 1, i'll give some solution of the previous IMC 2010 problems. The problems are relatively easy compared to the last year.

 Problem 1.  Let $a\leq b$ where $a$ is a positive real number
\[\int_a^b(x^2+1)e^{-x^2}dx\geq e^{-a^2}-e^{-b^2}.\]

Solution: Okay, this is too easy for IMC, first we prove that $(x^2+1)e^{-x^2}\geq 2xe^{-x^2}$ for all $x\in [a,b]$, this would mean $x^2+1 \geq x \Longleftrightarrow (x-1)^2\geq 0$ which is obvious. Since $\int_a^b 2xe^{-x^2} \, dx = \int_{a}^{b} e^{-x^2} \, d\left(x^2\right)=-e^{-b^2}+e^{-a^2}.$

comment: This can be one of the easiest problem along with problem 1 day 1 in IMC 2007. No trick, quickly recognized and less trouble.

Problem 2. Compute the sum of the series
\[\sum_{k=0}^{\infty} \frac1{(4k+1)(4k+2)(4k+3)(4k+4)}=\frac{1}{1\cdot 2 \cdot 3 \cdot 4} +\frac{1}{5\cdot 6 \cdot 7 \cdot 8} +\dots .\]

Solution: There you go, so many ideas for this one.. I you have enough mental to do some tedeous computation, you can start with
\[\int_0^1 \int_0^t \int_0^u \int_v \sum_{k=0}^{\infty} x^{4k} \, dx \, dv \, du \, dt=\int_0^1 \int_0^t \int_0^u \int_0^v \frac{1}{1-x^4} \, dx \, dv \, du \, dt\].

For $0\leq x \leq v \leq u \leq t <1 $, the power series converges uniformly (by abel's test).
Notice that

\[\begin{align*}\int_0^v \frac{1}{1-x^4} \, dx &= \int_0^v \frac{1}{2}\left( \frac{1}{1-x^2} + \frac{1}{1+x^2}\right)\\ &=\int_0^v \frac{1}{4}\left( \frac{1}{1+x} + \frac{1}{1-x}\right) +\frac{1}{2}\arctan v \\ &= \frac{1}{4}\ln \left|\frac{1+v}{1-v}\right|+\frac{1}{2}\arctan v \end{align*}\]

Now for the second integral, first by partial integration we have $\int_0^u \ln |1-v| \, dv = (u-1)\ln |1-u|-u$ and similarly $\int_0^u \ln |1+v| \, dv = (u+1) \ln |u+1|-u$. Also, by partial integration we have
$\int_0^u \arctan v \, dv = u \arctan u - \int_0^u \frac{u}{1+u^2}= u \arctan u - \frac{1}{2} \ln |1+u^2|$

Yes, that is just second..  Now we can add them altogether yields

\[\frac{u}{4} \ln \left|\frac{1+u}{1-u}\right| + \frac{1}{4} \ln \left|\frac{1-u^2}{1+u^2}\right|+\frac{u}{2}\arctan u\]

First we compute

\[\int_0^t \frac{u}{2} \arctan u=\frac{1}{4} t^2 \arctan t -\frac{1}{4}\int_0^t \left(\frac{u^2}{1+u^2}\right)=\frac{1}{4}\left( (t^2 +1) \arctan t -t \right)\]

just finish it $\int_0^1\frac{1}{4}\left( (t^2 +1) \arctan t -t \right) dt$
$=\frac{1}{4} \left.\left(\frac{t^3}{3}+t\right) \arctan t \right \lvert_0^1 - \left(\int_0^1 \frac{t^3+t}{12(t^2+1)}+ \frac{2t}{12(t^2+1)}dt\right) - \frac{1}{8}$
$=\frac{\pi}{12}-\frac{1}{24}+\frac{1}{12}\int_0^1 \frac{2t}{t^2+1}-\frac{1}{8} = \frac{\pi}{12}-\frac{1}{6}-\frac{1}{12} \ln 2.$

Then we compute
\[\int_0^t\frac{u}{4}\ln\left(\frac{1+u}{1-u}\right)\, dt=\frac{t^2}{8}\ln\left(\frac{1+t}{1-t}\right)-\left(\int_0^t\frac{u^2}{4}\left(\frac{1}{1-u^2}\right)\, dt\right)\]
\[=\frac{t^2}{8}\ln\left(\frac{1+t}{1-t}\right)+\frac{1}{4}\int_0^t 1-\frac{1}{1-u^2}\, dt\]
\[=\frac{t^2}{8}\ln\left(\frac{1+t}{1-t}\right)+\frac{t}{4}-\frac{1}{8}\ln\left(\frac{1+t}{1-t}\right)\]


and so $\int \left(\frac{t^2-1}{8}\right)\ln\left(\frac{1+t}{1-t}\right)+\frac{t}{4}\, dt=$
$\frac{1}{8}\left(\frac{t^3}{3}-t\right)\ln\left(\frac{1+t}{1-t}\right)- \frac{1}{4}\int\left(\frac{\left(t^3-t\right)}{3(1-t^2)}-\frac{2t}{3(1-t^2)}\right)\, dt+\frac{t^2}{8}$
$=\frac{1}{8}\left(\frac{t^3}{3}-t\right)\ln\left(\frac{1+t}{1-t}\right)+\frac{t^2}{24}+\frac{1}{12}\int \left(\frac{2t}{(1-t^2)}\right)\, dt +\frac{t^2}{8}$
$=\frac{1}{8}\left(\frac{t^3}{3}-t\right)\ln\left(\frac{1+t}{1-t}\right)+\frac{t^2}{24}-\frac{\ln(1-t^2)}{12} +\frac{t^2}{8}$
$\left(\frac{t^3}{24}-\frac{t}{8}-\frac{1}{12}\right)\ln(1+t)+\left(-\frac{t^3}{24}+\frac{t}{8}-\frac{1}{12}\right)\ln(1-t)+\frac{t^2}{6}.$
Therefore

\[\int_0^1 \left(\frac{t^2-1}{8}\right)\ln\left(\frac{1+t}{1-t}\right)+\frac{t}{4}\, dt=\frac{1-\ln 2}{6}\]

Lastly, we compute $\int_0^1\int_0^t \frac{1}{4} \ln \left(\frac{1-u^2}{1+u^2}\right)\,du\, dt$.

By partial integration
\[\frac{1}{4}\int_0^t \ln(1+u^2)\,du=\frac{1}{4}\left(u\ln(1+u^2)|_0^t-\int_0^t \frac{2u^2}{1+u^2}\right)\]
\[=\frac{t}{4}\ln(1+t^2)-\frac{t}{2}+\frac{\arctan t}{2}\]

Also by partial integration
\[\frac{1}{4}\int_0^t \ln(1-u^2)\,du=\frac{1}{4}\left(u\ln(1-u^2)|_0^t+\int_0^t \frac{2u^2}{1-u^2}\right)\]
\[=\frac{t}{4}\ln(1-t^2)-\frac{t}{2}+\frac{1}{4}\ln\left|\frac{1+t}{1-t}\right|\]

Therefore \[\frac{1}{4}\int_0^t \ln\left|\frac{1-u^2}{1+u^2}\right|\,dt=\frac{t}{4}\ln\left|\frac{1-t^2}{1+t^2}\right|+\frac{1}{4}\ln\left|\frac{1+t}{1-t}\right|-\frac{\arctan t}{2}\]

By previous computation $\int_0^1 \frac{\arctan t}{2}\,dt=\frac{t\arctan t}{2}-\frac{\ln(1+t^2)}{4}|_0^1=\frac{\pi}{8}-\frac{\ln 2}{4}$ and
$\frac{1}{4}\int_0^1 \ln\left|\frac{1+t}{1-t}\right|\,dt=\frac{(t+1)\ln(1+t)+(1-t)\ln(1-t)}{4}_0^1=\frac{\ln 2}{2}$ and
$\int_0^1\frac{t}{4}\ln\left|\frac{1-t^2}{1+t^2}\right|\,dt=\frac{-1}{2}\left(\frac{1}{4}\int_0^1\ln\left|\frac{1+t^2}{1-t^2}\right|\,d(t^2)\right)=\frac{-1}{2}\left(\frac{\ln 2}{2}\right)=\frac{-\ln 2}{4}$

Adding all numerical values we have the answer is
\[\frac{\ln(2)}{2}-\frac{\ln 2}{4}-\frac{\pi}{8}+\frac{\ln 2}{4}+\frac{\pi}{12}-\frac{1}{6}-\frac{\ln 2}{12}+\left(\frac{1-\ln 2}{6}\right)=\frac{\ln 2}{4}-\frac{\pi}{24}.\]

comment: This is a sudden-death problem, if you miscalculate the integral somewhere in the middle, you've wasted your valuable time nor you get a false answer. From the first minute i see the problem, i have so many ideas, but the surely one is the above. One possible idea is to use the Beta integral, or euler reflection formula. It is similar to the problem I solved in College Mathematical Journal years ago and the problem can be generalized to the following: Calculate
\[\sum_{k=1}^{\infty}\frac{m!}{\binom{mk}{m}} \qquad m\in \mathbb{Z} \qquad m>0\]
where in this problem $m=4$.


Problem 3. Define the sequence $x_1,x_2,\dots$ inductively by $x_1=\sqrt{5}$ and $x_{n+1}=x^2_n-2$ for each $n\geq 1.$ Compute
\[\lim_{n\to \infty} \frac{x_1\cdot x_2\cdots x_3\dots x_n}{x_{n+1}}.\]

Solution:  We have $x_{n+2}=x_{n+1}^2-2$ thus $x_{n+2}-2=x_{n+1}^2-4=(x_{n+1}-2)(x_{n+1}+2)$.The function $f(x)=x^2-2$ is increasing for positive $x$, and since $x_2 >x_1$ by induction the sequence is increasing, also $x_1>1$ inductively implies $x_n>n$, and hence $x_n$ is unbounded increasing positive sequence. Thus $\lim \frac{1}{x_n}=0$.
and related to $x_2=3>2$, we have $x_n > 2$ for all $n$, or in particular $x_n \neq 2$ for all $n$. Thus
\[x_{n+1}+2 = \frac{x_{n+2}-2}{x_{n+1}-2}\]
and since $x_n=\sqrt{x_{n+1}+2}$ we have
\[x_n =\sqrt{\frac{x_{n+2}-2}{x_{n+1}-2}}.\]
Now taking the product and telescoping we have
\[x_1 x_2 \cdots x_n =\sqrt{\frac{x_{n+2}-2}{x_2-2}}=\sqrt{x_{n+2}-2}=\sqrt{x_{n+1}^2-4}\]
and we wish to calculate
\[\lim_{n\to \infty} \frac{x_1\cdot x_2\cdots x_3\dots x_n}{x_{n+1}}=\lim_{n\rightarrow \infty} \sqrt{1-\frac{4}{x_{n+1}^2}}=1.\]

comment:  As usual problem 3 is tricky, i spent quite a lot of time to figure it out, after the unsuccessful trigonometric substitution, hyperbolic estimation, i finally arrive to the telescoping relation. I believe there should be a nice trigonometric substitution for this problem.

Next part is problem 4 and problem 5.. I couldn't solve them if i was given only 5 hours. The post is still in the draft, since i only can solve problem 5 for the moment.. :)

Post a Comment: